POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Foundations of digital signal processing [N1EiT1>PCPS]

dr hab. inż. Anna Domańska anna.domanska@put.poznan.pl		dr hab. inż. Anna Domańska anna.domanska@put.poznan.pl		
Coordinators		Lecturers		
Number of credit points 6,00				
Tutorials 0	Projects/seminar 0	S		
Number of hours Lecture 20	Laboratory classe 20	es	Other (e.g. online) 0	
Form of study part-time		Requirements compulsory		
Level of study first-cycle		Course offered in Polish		
Area of study (specialization)		Profile of study general academic	C	
Field of study Electronics and Telecommunications		Year/Semester 2/4		
Course				

Prerequisites

Knowledge about basic terms from the mathematical analysis and linear algebra, knowledge about signal processing (analog): basic terms, definition and properties of Fourier and Laplace transforms, Fourier series, design of analog filters.

Course objective

Knowledge and understanding of basic methods of discrete signals analysis, knowledge how to analyse and design digital linear time-invariant systems.

Course-related learning outcomes

Knowledge:

1. Knowledge about fundamental tools for analysis of digital signals and systems (z-transform, and Fourier transform)

2. Knowledge about basic tools for practical signal spectrum analysis

3. Knowledge about design and implementation of digital linear time-invariant filters

Skills:

- 1. Ability to correct interpretation of digital signal or system analysis results
- 2. Ability to design and implement a linear time-invariant digital filter
- 3. Ability to do spectrum analysis of a signal

Social competences:

1. Understanding necessity and knowledge about continuous learning, improving professional, personal and social competences

2. Understanding of necessity of professional approach to technical problems, and responsibility for his/her technical solutions

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture - written exam on which consist several equivalent questions problem-oriented. Passing threshold: 50% points, linear scale.

Laboratory:

- positive evaluations for individually prepared reports to every exercise
- positive evaluations of the knowledge from themes of exercises (verification oral or written)

Programme content

Lecture

- 1. Processes of the digitalisation (sampling, quantisation) of signals.
- 2. Theory of discreet linear time-invariant systems (LTI).
- 3. Z-transform, definition and properties.
- 4. Fourier transform of discrete-time signals (DtFT), selected properties of the transform.
- 5. Discrete Fourier transform (DFT), selected properties, frequency analysis of signals, leakage of spectrum.
- 6. Coherent and incoherent averaging multiple DFT.
- 7. Digital filters FIR and IIR: algorithm, structure, design.
- 9. Comb filter, notch filter.
- 9. Digital resonator, digital oscillator.
- 10. Moving average filter (MAV).
- 11. Coherent signal averaging, CAV filter.

Laboratory

Exercises concern of selected issues presented on the lecture (realized in Matlab programs): application of Z Transform (transfer function realization), DFT (properties, frequency analysis, leakage of spectrum), averaging multiple DFT, digital filters (FIR, IIR, comb, notch), digital resonator/oscillator, MAV, CAV.

Course topics

none

Teaching methods

Lecture - presentation inclusive examples to chosen issues.

Laboratory – exercises based on Matlab and Simulink programs.

Before every exercise

- presentation explaining theoretical context concerning of theme and of task to realization,
- the presentation of part of program code Matlab (rest of code is supplemented by students).

Bibliography

Basic

- 1. Zieliński T., Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań, WKŁ, Warszawa, 2009.
- 2. Lyons R., Wprowadzenie do cyfrowego przetwarzania sygnałów, WKŁ, Warszawa, 2010.
- 3. Wojciechowski J., Sygnały i systemy, WKŁ, Warszawa, 2008.

Additional

1. Mrozek B., Mrozek Z., Matlab i Simulink. Poradnik użytkownika, Helion, Gliwice, 2018.

2. Osowski S., Cyfrowe przetwarzanie sygnałów z zastosowaniem MATLABA, OWPW, Warszawa, 2016.

3. Zieliński T. (red), Cyfrowe przetwarzanie sygnałów w telekomunikacji. Podstawy. Multimedia.

Transmisja, PWN, Warszawa, 2014

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	6,00
Classes requiring direct contact with the teacher	50	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	75	4,00